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Abstract The maintenance of aircraft components is
crucial for avoiding aircraft accidents and aviation
fatalities. To provide reliable and effective maintenance
support, it is important for the airline companies to
utilise previous repair experience with the aid of
advanced decision support technology. Case-based rea-
soning (CBR) is a machine learning method that adapts
previous similar cases to solve current problems. To
effectively retrieve similar aircraft maintenance cases,
this research proposes using a CBR system to aid elec-
tronic ballast fault diagnosis of Boeing 747-400
airplanes. By employing genetic algorithms (GA) to
enhance dynamic weighting and the design of non-sim-
ilarity functions, the proposed CBR system is able to
achieve superior learning performance as compared to
those with either equal/varied weights or linear similar-
ity functions.

Keywords Aircraft maintenance Æ Electronic ballast Æ
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1 Introduction

Airplanes in operation throughout the world call for
appropriate maintenance to assure flight safety and
quality. When faults emerge in an aircraft component,
actions for fault diagnosis and troubleshooting must be
executed promptly and effectively. An airplane consists
of many electronic components among which the elec-
tronic ballast is one common component to control

fluorescent lamps in the cabin. The electronic ballast
plays an important role in providing proper lights for
passengers and flight crews during a flight. Unstable
cabin lighting, such as flash and ON/OFF problems, is a
common problem occurring in airplanes. An airplane
usually has hundreds of electronic ballasts mounted in
panels, such as light deflectors in fluorescent lamp fix-
tures. When an electronic ballast is abnormal, it has to
be removed and sent to the accessory shop for further
investigation.

The maintenance records for electronic ballasts gen-
erally contain information about the number of
defective units found, the procedures taken, and the
inspection or repair status. Basically these records are
stored and used to assist mechanics in identifying faults
and determining the components where repair or
replacement is necessary. This is because previous simi-
lar solutions may provide valuable troubleshooting clues
for new faults.

Similar to the analogy, CBR is a machine learning
method that adapts previous similar cases to solve cur-
rent problems. CBR shows significant promise for
improving the effectiveness of complex and unstructured
decision making. It is a problem-solving technique that
is similar to the decision making process used in many
real-world applications. This study considers CBR an
appropriate approach to aid aircraft mechanics in
dealing with the electronic ballast maintenance problem.
Basically CBR systems make inferences using analogy to
obtain similar experiences for solving problems. Simi-
larity measurements between pairs of features play a
central role in CBR [1]. However the design of an
appropriate case-matching process in the retrieval step is
still challenging. For the effective retrieval of previous
similar cases, this research develops a CBR system with
GA mechanisms used to enhance dynamic feature
weighting and the design of non-similarity functions.
GA is an optimisation technique inspired by biological
evolution [2]. Based upon the natural evolution concept,
GA works by breeding a population of new answers
from the old ones using a methodology based on
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survival of the fittest. In this research, GA is used to
determine not only the fittest non-linear similarity
functions, but also the optimal feature weights.

By using GAmechanisms to enhance the case retrieval
process, a CBR system is developed to aid electronic
ballast fault diagnosis of Boeing 747-400 airplanes. Three
hundred electric ballast maintenance records from
Boeing 747-400 airplanes were gathered from the
accessory shop of one major airline in Taiwan. The
results demonstrated that an approach with non-linear
similarity functions and dynamic weights indicates bet-
ter learning performance than other approaches with
either linear similarity functions or equal/varied weights.

2 Literature review

2.1 Case-based reasoning

CBR is a relatively new method in artificial intelligence
(AI). It is a general problem-solving method that takes
advantage of the knowledge gained from experience and
attempts to adapt previous similar solutions to solve a
particular current problem. As shown in Fig. 1, CBR
can be conceptually described by a CBR-cycle that
composes of several activities [3]. These activities include
(1) retrieving similar cases from the case base, (2)
matching the input and retrieved cases, (3) adapting
solutions suggested by retrieved similar cases to better fit
the new problem; and (4) retaining the new solution once
it has been confirmed or validated.

A CBR system gains an understanding of the prob-
lem by collecting and analysing case feature values. In a
CBR system, the retrieval of similar cases relies on a
similarity metric which is used to compute the distance
between pairs of case features. Generally, the perfor-
mance of the similarity metric and the feature weights
are keys to the CBR [4]. A CBR system could be inef-
fective in retrieving similar cases if the case-matching
mechanism is not appropriately designed.

For an aircraft maintenance problem, CBR is a
potential approach in retrieving similar cases for diag-
nosing faults as well as providing appropriate repair
solutions. Several researches applied CBR to solve var-
ious airlines industry problems. Richard [5] developed
CBR diagnostic software for aircraft maintenance.
Magaldi [6] proposed applying CBR to aircraft trou-
bleshooting on the flight line. Other CBR applications
included flight condition monitoring and fault diagnosis
for aircraft engine [7], service parts diagnosis for

improving service productivity [8], and data mining for
predicting aircraft component replacement [9].

Most of these CBR systems applied n-dimension
vector space to measure the similarity distance between
input and retrieved cases. For example, Sylvain et al. [9]
adopted the nearest neighbourhood method. However,
seldom have researchers attempted to employ dynamic
weighting with non-linear similarity functions to develop
fault diagnosis models for aircraft maintenances.

2.2 Genetic algorithms for feature weighting

In general, feature weights can be used to denote the
relevance of case features to a particular problem.
Wettschereck et al. [10] made an empirical evaluation of
feature-weighting methods and concluded that feature-
weighting methods have a substantially higher learning
rate than un-weighted k-nearest neighbour methods.
Kohavi et al. [11] observed that feature weighting
methods have superior performance as compared to
feature selection methods. When some features are
irrelevant to the prediction task, Langley and Iba [12]
pointed out that appropriate feature weights can sub-
stantially increase the learning rate.

Several researches applied GA to determine the most
suitable feature weights. GA is a technique of modelling
the genetic evolution and natural selection processes. A
GA procedure usually consists of chromosomes in a
population, a ‘fitness’ evaluation function, and three
basic genetic operators called reproduction, crossover
and mutations. Initially, chromosomes in the form of
binary strings are generated randomly as candidate
solutions to the addressed problem. A fitness value
associated with each chromosome is subsequently com-
puted through the fitness function representing the value
of the candidate solution. Chromosomes with higher
fitness values are selected to generate better offspring for
the new population through genetic operators. Con-
ceptually, the unfit are eliminated and the fit survive to
contribute genetic material to the subsequent genera-
tions.

Wilson and Martinez [13] proposed a GA-based
weighting approach which had better performance than
the un-weighted k-nearest neighbour method. For large-
scale feature selection, Siedlecki and Sklansky [14]
introduced a 0–1 weighting process based on GAs. Kelly
and Davis [15] proposed a GA-based on the weighted
K-NN approach (GA-WK-NN) which had a lower error
rates than the standard K-NN one. Brill et al. [16]

Fig. 1 A CBR cycle
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demonstrated fast feature selection using GAs for neural
network classifiers.

Though the above research used GA mechanisms to
determine the feature weights for case retrieval, seldom
did a study apply the GA to simultaneously determine
features weights and corresponding similarity functions
in a non-linear way. This paper attempts to apply GA
mechanisms to determine both the optimal feature
weights and the most appropriate non-linear similarity
functions for case features. A CBR system is developed
to diagnose the faulty accessories of electronic ballasts
for Boeing 747-400 airplanes.

3 Methodology

3.1 Linear similarity

From the case base, a CBR system retrieves an old case
that is similar to the input case. As shown in Fig. 2, the
retrieval process is based on comparing the similarities
for all feature values between the retrieved case and the
input case, where f iI and fi

R are the values of feature i
in the input and retrieved case, respectively. There are
many evaluation functions for measuring the degree of
similarity. One numerical function using the standard
Euclidean distance metric is shown in Eq. 1, where Wi

is the ith feature weight. The feature weights are usu-
ally statically assigned to a set of prior known fixed
values or all set equal to 1 if no arbitrary priorities
determined.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1
Wi� f I

i � f R
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3.2 Non-linear similarity

Based on Eq. 1, this study proposed a non-linear simi-
larity approach. The difference between the linear simi-
larity and non-linear similarity is the distance function
definition. For a non-linear similarity approach (fi

I�fiR)2
is replaced by the distance measurement [(fi

I�fiR)2]k as
shown in Eq. 2.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n
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ið Þ2

h ik
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Where k is the exponent of the standard Euclidean
distance function for the corresponding input and
retrieved feature values. A GA mechanism is proposed
to compute the optimal k value for each case feature.
The range of exponent k is scaled from 1/2, 1/3, 1/4, 1/5,
1, 2, 3, 4 and 5. Figure 3 depicts an example equation
y=xk; where x2[0, 1] with various combinations of k.

3.3 Static feature weighting

In addition to the linear or non-linear type of similarity
function, feature weights Wi can also influence the dis-
tance metric. Feature weighting can be either static or
dynamic. The static weighting approach assigns fixed
feature weights for all case features throughout the
entire retrieval process. For static feature weighting,
each feature’s weight can either be identical or varied.
The feature weights are usually statically assigned to a
set of prior known fixed values or equal to 1 if no
arbitrary priorities are determined. For varied feature
weighting, this study proposed another GA mechanism
to determine the most appropriate weight for each fea-
ture.

3.4 Dynamic feature weighting

For the dynamic weighting approach, feature weights
are determined according to the context of each input

Fig. 2 Feature values

Fig. 3 Illustration for linear
and non-linear functions

442



case. As shown in Fig. 4, for a given input case, there are
m retrieved cases in the case base, where i=1 to n, n is
the total number of features in a case, j=1 to m, m is the
total number of retrieved cases in a case base. fij

R is
the ith feature value of the retrieved casej, and fi

I is the of
the ith feature value of the input case. Oj

R is the outcome
feature value of the jth retrieved case and OI is the
outcome feature value of the input case.

Assume that the outcome feature value is categorical
data with p categories. For those features of categorical
values, the weights are computed using Eq. 3.

Wi ¼ Max
Lit

Ei

� �

ð3Þ

where i=1 to n, n is the number of case features in a
case; t=1 to p, p is the number of categories for the
outcome feature. Ei is the number of retrieved cases of
which fij

R is equal to fi
I. Lit is the number of retrieved

cases of which fij
R is equal to fi

I and Oj
R is the tth cat-

egories.
For continuous values, their weights are not gener-

ated in the same way as described above unless the
feature values are discretised in advance. Though there
may exist various methods of discretisation, this study
proposed another GA mechanism to discretise the con-
tinuous feature values. For the ith feature, a GA pro-
cedure is used to compute the optimal value, say Ai, to
form a range centered on fi

I. Let Ki denote the number
of cases whose fij

R is between (fi
I�Ai) and (fi

I+Ai).
Thus, Ei is replaced by Ki in Eq. 3. Feature weights are
computed as shown in Eq. 4.

Wi ¼ Max
Lit

Ki

� �

ð4Þ

Based on Eq. 3 and Eq. 4, each input case has a
corresponding set of feature weights in this dynamic
weighting approach.

3.5 Experiment design

Since both the feature weights and similarity measure-
ments between pairs of features play a vital role in case
retrieval, this research investigated the CBR perfor-
mance by observing the effects resulting from the com-
binations of different feature weighting approaches and
similarity functions.

As indicated in Fig. 5, there are six approaches that
combine different types of similarity functions and fea-
ture weighting methods. These are the linear similarity
function with equal weights (approach A), linear simi-
larity function with varied weights (approach B), non-
linear similarity function with equal weights (approach
C), non-linear similarity function with varied weights
(approach D), linear similarity function with dynamic
weights (approach E) and non-linear similarity function
with dynamic weights (approach F).

The differences between the three feature weighting
approaches are described as follows. For the equal
weights approach, feature weights are all set equal to 1.
For the varied weights approach, there is only one set
of feature weights determined by a proposed GA

Fig. 4 Denotation of features
and outcome feature values

Fig. 5 Combinations of
similarity functions and feature
weighting methods
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procedure. For the dynamic weights approach, there is a
corresponding set of feature weights for each input case.
That is, sets of feature weights are dynamically deter-
mined according to the input case.

4 Experiment and results

4.1 Case description

The aircraft electronic ballasts used to drive fluorescent
lamps can be mounted on a panel such as the light
deflector of a fluorescent lamp fixture. The fluorescent
lamps initially require a high voltage to strike the lamp
arc and maintain a constant current. Usually there is a
connector at one end of the unit for the routing of all
switching and power connections. As shown in Fig. 5,
the electronic ballast operates from control lines of 115-
vac/400 Hz aircraft power. When the operation power is
supplied, the electronic ballast will start and operate two
rapid start fluorescent lamps or single lamp in the pas-
senger cabin of various commercial aircrafts, such as
Boeing 747-400, 737-300, 737-400, 747-500 etc. There
are two control lines connecting the ballast set and
control panel for ON/OFF and BRIGHT/DIM modes
among which DIM mode is used at night when the cabin
personnel attempt to decrease the level of ambient light
in the cabin.

Three hundred electric ballast maintenance records
from the Boeing 747-400 were taken from the accessory
shop of one major airline in Taiwan to construct the
trouble-shooting system. Each maintenance case con-
tains seven features identified as highly related to
abnormal electric ballast operations. In Table 1, these
features are either continuous or categorical. The out-
come feature is the categories of the replaced parts set.
For instance, category C1 denotes the replaced parts of
a transformer (illustrated as T101 on a printed circuit
board) and a capacitor (illustrated as C307 on a prin-
ted circuit board). Category C2 denotes the replaced
parts of an integrated circuit (illustrated as U300 on a
printed circuit board), a transistor (illustrated as Q301
on a printed circuit board) and a fuse (illustrated as
F401 on a printed circuit board). Each category in the
outcome feature represents a different set of replaced
parts.

4.2 GA implementation

According to the experiment design, this study imple-
ments three GA procedures to determine (1) the optimal
exponent k in the non-linear similarity functions, (2) the
most appropriate set of varied weights for static feature
weighting and (3) sets of feature weights for dynamic
feature weighting. Several steps are required in devel-
oping a GA computer program. These steps include
chromosome encoding, fitness function specification,
and internal control parameter specification. The details
of each step according to the order of three GA appli-
cations are described as follows.

4.2.1 Non-linear similarity

Chromosomes are designed for encoding the exponent k
in the non-linear similarity functions. Because there are
six features in a case, a chromosome was composed of
six genes to encode the exponents in the six corre-
sponding non-linear functions. Each chromosome is
assigned a fitness value based on Eq. 5. The population
size was set to 50; population selection method was
based on the roulette wheel, the probability of mutation
was 0.06 and the probability of crossover was 0.5. The
crossover method is based on uniform and the entire
learning process stopped after 10,000 generations.

Minimise

fitness ¼

P

q

j¼1
Cj

q

0

B

B

B

@

1

C

C

C

A

ð5Þ

Where j=1 to q, q is the number of training cases. Cj

is set to 1 if the expected outcome feature is equal to the
real outcome feature for the jth training case. Otherwise,
Cj is set to 0.

4.2.2 Varied weights

Chromosomes are designed for encoding a set of feature
weights whose the values range was [0..1]. The fitness
function is also defined as indicated in Eq. 5. As for the
GA parameters, the population size was set to 50, the

Table 1 The case description
Input features Data type Range

Alternating current on bright mode when electronic ballast turns on Continuous 0 to 2 (amp)
Alternating current on dim mode when electronic ballast turns on Continuous 0 to 2 (amp)
Alternating current on bright mode when electronic ballast turns off Continuous 0 to 2 (amp)
Alternating current on dim mode when electronic ballast turns off Continuous 0 to 2 (amp)
Is light unstable when electronic ballast turns on Categorical 0 and 1
Is it not illuminated when electronic ballast turns on Categorical 0 and 1
Outcome feature
Components replacement Categorical C1, C2, ...,C10
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probability of mutation was 0.06, and the probability of
crossover was 0.5. The entire learning process stopped
after 10,000 generations.

4.2.3 Dynamic weights

Chromosomes are designed for encoding values Ai to
form a range centered on fi

I for features that are con-
tinuous data. The fitness value is also calculated using
Eq. 5 for each chromosome in the population. As for the
GA parameters, mutation rate was 0.009, and the other
settings were the same as the ones used for varied
weights.

4.3 Results

The case base is divided into two data sets for training
and testing with the ratio of 2:1. That is, 200 Boeing 747-
400 aircraft electric ballast maintenance cases were used
for training and the remaining 100 cases were used for
testing. The results are illustrated in Table 2. All
approaches were evaluated with 3-fold cross validation.
The result of approach (F) with non-linear similarity
functions and dynamic weighs is the best where the mean
error (ME) is equal to 0.193 for training and 0.180 for
testing.

To further investigate the results, approach A with
linear similarity function and equal weights provided an
inferior training result. There is no obvious difference
for the testing results of approaches A, B, and E, all of
which adopt linear similarity functions. However,
among those approaches that do adopt non-linear sim-
ilarity functions, it seems that approach F, with dynamic
weights, has a superior result as compared to approach
D with varied weights and approach C with equal
weights. It can be inferred that both non-linear similarity
functions and the dynamic weighting process are crucial
for a CBR system to effectively retrieve previous asso-
ciated cases.

5 Conclusions

An inefficient aircraft maintenance service may lead to
flight delays, cancellations or even accidents. Aircraft
maintenance is therefore one of the most important

activities airlines do to improve flight safety as well as
obtain worldwide competitive strength. To improve the
maintenance productivity, this research developed a
CBR system with GA mechanisms to enhance the
retrieval of similar aircraft electronic ballast maintenance
cases. Three GA procedures are proposed to determine
the optimal non-similar similarity functions and varied
and dynamic feature weights, respectively. The experi-
mental results demonstrated that the approach adopting
both non-linear similarity functions and dynamic weights
achieves the best performance than approaches with ei-
ther linear similarity functions or equal/varied weights.

In addition to the electronic ballast, there are
numerous components embedded in an aircraft system.
The proposed method could also be employed for
shorter repair times and lower maintenance costs. Fur-
thermore, aircraft preventative maintenance is also an
important issue. In the future, it may be possible to
embed such a trouble-shooting component into the air-
craft preventive maintenance system based on the his-
tory data in flight data recorders (FDR) to help ensure a
safer and more comfortable flight.
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